Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photosynth Res ; 135(1-3): 203-211, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28039566

RESUMO

Diatoms possess fucoxanthin chlorophyll proteins (FCP) as light-harvesting systems. These membrane intrinsic proteins bind fucoxanthin as major carotenoid and Chl c as accessory chlorophyll. The relatively high sequence homology to higher plant light-harvesting complex II gave rise to the assumption of a similar overall structure. From centric diatoms like Cyclotella meneghiniana, however, two major FCP complexes can be isolated. FCPa, composed of Fcp2 and Fcp6 subunits, was demonstrated to be trimeric, whereas FCPb, known to contain Fcp5 polypeptides, is of higher oligomeric state. No molecular structure of either complex is available so far. Here we used electron microscopy and single particle analysis to elucidate the overall architecture of FCPb. The complexes are built from trimers as basic unit, assembling into nonameric moieties. The trimer itself is smaller, i.e. more compact than LHCII, but the main structural features are conserved.


Assuntos
Proteínas de Ligação à Clorofila/química , Diatomáceas/metabolismo , Complexos de Proteínas Captadores de Luz/química , Proteínas de Ligação à Clorofila/ultraestrutura , Cromatografia em Gel , Complexos de Proteínas Captadores de Luz/ultraestrutura , Multimerização Proteica
2.
Photosynth Res ; 123(2): 157-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25366829

RESUMO

The consequences of ketocarotenoid production in transgenic tobacco (Nicotiana tabacum) plants expressing a Chlamydomonas reinhardtii gene encoding a ß-carotene ketolase were examined concerning the functionality of the photosynthetic apparatus. T1 plants produced less photosynthetic pigments per dry weight, but Chl a/Chl b ratios remained unchanged. Almost as much ketocarotenoids as accessory xanthophylls accumulated per Chl a molecule. These ketocarotenoids were found mainly in the thylakoid membranes, but were not functionally bound to light-harvesting complexes, although LHCII is known to be able to bind astaxanthin. On the contrary, high amounts of ketocarotenoids probably changed the properties of the lipid phase of the thylakoids, thereby reducing the stability of photosystem II supercomplexes and LHCII trimers and ultimately decreasing grana formation. In addition, photosystem II function in electron transport was impaired, and plants exhibited less non-photochemical quenching compared to wild-type plants. Thus, in order not to disturb vital functions of the plants, production of astaxanthin and other nutritionally valuable ketocarotenoids apparently requires ways to sequester the additional carotenoids to plastoglobuli.


Assuntos
Carotenoides/biossíntese , Complexos de Proteínas Captadores de Luz/metabolismo , Nicotiana/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Algas/biossíntese , Proteínas de Algas/genética , Chlamydomonas reinhardtii/genética , Transporte de Elétrons/genética , Transporte de Elétrons/fisiologia , Oxigenases/biossíntese , Oxigenases/genética , Plantas Geneticamente Modificadas/metabolismo , Tilacoides/fisiologia , Tilacoides/ultraestrutura , Nicotiana/genética
3.
J Plant Physiol ; 166(14): 1520-8, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19428140

RESUMO

The changes in some proteins involved in the light reactions of photosynthesis of the resurrection plant Haberlea rhodopensis were examined in connection with desiccation. Fully hydrated (control) and completely desiccated plants (relative water content (RWC) 6.5%) were used for thylakoid preparations. The chlorophyll (Chl) a to Chl b ratios of thylakoids isolated from control and desiccated leaves were very similar, which was also confirmed by measuring their absorption spectra. HPLC analysis revealed that beta-carotene content was only slightly enhanced in desiccated leaves compared with the control, but the zeaxanthin level was strongly increased. Desiccation of H. rhodopensis to an air-dried state at very low light irradiance led to a little decrease in the level of D1, D2, PsbS and PsaA/B proteins in thylakoids, but a relative increase in LHC polypeptides. To further elucidate whether the composition of the protein complexes of the thylakoid membranes had changed, we performed a separation of solubilized thylakoids on sucrose density gradients. In contrast to spinach, Haberlea thylakoids appeared to be much more resistant to the same solubilization procedure, i.e. complexes were not separated completely and complexes of higher density were found. However, the fractions analyzed provided clear evidence for a move of part of the antenna complexes from PSII to PSI when plants became desiccated. This move was also confirmed by low temperature emission spectra of thylakoids. Overall, the photosynthetic proteins remained comparatively stable in dried Haberlea leaves when plants were desiccated under conditions similar to their natural habitat. Low light during desiccation was enough to induce a rise in the xanthophyll zeaxanthin and beta-carotene. Together with the extensive leaf shrinkage and some leaf folding, increased zeaxanthin content and the observed shift in antenna proteins from PSII to PSI during desiccation of Haberlea contributed to the integrity of the photosynthetic apparatus, which is important for rapid recovery after rehydration.


Assuntos
Dessecação , Magnoliopsida/metabolismo , Proteínas de Plantas/metabolismo , Tilacoides/metabolismo , Clorofila/metabolismo , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica de Plantas , beta Caroteno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...